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Abstract—There are many applications of using association
rules in data streams, such as market analysis, network secu-
rity, sensor networks and web tracking. Mining closed frequent
itemsets is a further work of mining association rules, which
aims to find the subsets of frequent itemsets that could extract
all frequent itemsets. Formally, a closed frequent itemset is a
frequent itemset which has no superset with the same support
as it. One of well-known algorithms for mining closed frequent
itemsets based on the sliding window model is the NewMoment
algorithm. However, the NewMoment algorithm could not
efficiently mine closed frequent itemsets in data streams, since
they will generate closed frequent itemsets and many unclosed
frequent itemsets. Moreover, when data in the sliding window
is incrementally updated, the NewMoment algorithm needs to
reconstruct the whole tree structure. Therefore, we propose
the Subset-Lattice algorithm which embeds the property of
subsets into the lattice structure to efficiently mine closed
frequent itemsets over a data stream sliding window. Moreover,
when data in the sliding window is incrementally updated, our
Subset-Lattice algorithm will not reconstruct the whole lattice
structure.

Keywords-association rules, closed frequent itemsets, data
streams, frequent itemsets, sliding window

I. INTRODUCTION
Mining association rules is a process of nontrivial extrac-

tion of implicit, previously and potentially useful informa-
tion from data in databases. The most important task is to
discover association rules which generates new techniques
and tools.

In recent years, database and knowledge discovery com-
munities have focused on a new data model, in which data
arrives in the form of continuous streams. It is called the data
stream or streaming data. Many real-world applications data
is better appropriately handled by the data stream model than
by traditional static databases. Therefore, mining frequent
itemsets in data streams has become a research area with
increasing importance [2, 3, 5, 6, 8, 9, 10, 11].

The main goal of mining association rules is to find the
frequent itemsets, where a frequent itemset is a combination
of items whose appearing times in the datasets is greater
than a given threshold. In traditional algorithms of mining
association rules, e.g., Apriori [1], all frequent itemsets will
be kept. Although the information is complete, there are

Figure 1. Transaction Database T

Figure 2. Frequent itemsets of Transaction Database T with the minimal
support = 2

many redundancies among the mining result. Take Transac-
tion Database T in Figure 1 as an example, Figure 2 shows
the frequent itemsets of Transaction Database T , where the
value of the minimal support is 2. By the characteristic of
a frequent itemset — all subsets of a frequent itemset are
also frequent itemsets, frequent itemsets “ab”, “ad”, and
“bd” seem very obvious and are redundant. For the reasons
mentioned above, the concept of maximal frequent itemsets
is proposed to reduce the redundancy. A frequent itemset is
maximal frequent itemset if none of its proper supersets is
frequent. For the example shown in Figure 1, “abd” is the
maximal frequent itemset.

Although maximal frequent itemsets eliminate all re-
dundancies, they lose information. The support counts of
maximal frequent itemsets are known, but the support counts
of their subsets are all lost. To overcome the disadvantage
of maximal frequent itemsets, a new kind of frequent item-
set, called closed frequent itemsets, is proposed. A closed
frequent itemset is a frequent itemset which has no superset
with the same support as it. For the example shown in Figure
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Figure 3. Closed large itemsets of Transaction Database T with the
minimal support = 2

1, Figure 3 shows the closed frequent itemsets. Frequent
itemset “ab” is a closed large itemset, because all other
frequent itemsets (“abd”) that contain it do not have the
same support count with it. However, frequent itemset “bd”
is not a closed frequent itemset, since frequent itemset “abd”
contains “bd” and has the same support as “bd”. Closed
frequent itemsets can greatly reduce the number of large
itemsets, and do not lose any information.

The Moment algorithm [4] has been proposed for mining
closed frequent itemsets over a data stream sliding window.
(Note that the sliding window model emphasizes the recent
data.) It defines four types of conditions to each candidate
node. However, it stores information including the current
closed frequent itemsets and many unclosed frequent item-
sets, which consumes much memory, especially, when the
support threshold is low. Moreover, the exploration and node
type checking are time consuming.

The NewMoment algorithm [7] also reserves the hash
table used in the Moment algorithm to check whether each
candidate node is a closed frequent itemset or not. Although
the NewMoment algorithm resolves the disadvantage of the
time and memory space consuming of the Moment algorithm
by using the technique of bit-patterns to speed up the tree
construction, it still has to scan the transactions in the
sliding window to generate the bit-sequence of each item and
generate unclosed frequent itemsets in the search structure.
Morever, the NewMoment algorithm needs to reconstruct the
whole tree structure, when the window slides.

Therefore, in this paper, we propose the Subset-Lattice
algorithm, which will not produce unclosed nodes into the
lattice structure, to efficiently mine closed frequent itemsets.
We use properties of sets to compute the closed frequent
itemsets directly among transactions. When the window is
sliding, there will not be too much fluctuation in the Subset-
Lattice structure.

The rest of the paper is organized as follows. Section 2
gives a survey of some algorithms. Section 3 presents the
proposed Subset-Lattice algorithm. In section 4, we study
the performance. Finally, we give a conclusion.

II. RELATED WORK

In this section, we describe two well-known algorithms,
the Moment algorithm [4], and the NewMoment algorithm
[7] for mining closed frequent itemsets in data streams.

A. The Moment Algorithm
The Moment algorithm proposed an in-memory data

structure, the closed enumeration tree (CET) to maintain

a dynamically selected small set of itemsets. Similar to a
prefix tree, each node ni represents an itemset I . A child
node, nj , is obtained by adding a new item to I . The CET
only maintains a dynamically selected set of itemsets, which
include (1) closed frequent itemsets, and (2) itemsets that
form a boundary between closed frequent itemsets and the
rest of the itemsets.

The Moment algorithm divides itemsets on the boundary
into two categories. First, it corresponds to the boundary
between frequent and non-frequent itemsets. Second, it
corresponds to the boundary between closed and non-closed
itemsets.

B. The NewMoment Algorithm

In this subsection, we describe the NewMoment algo-
rithm. A bit vector based representation of items is used in
the NewMoment algorithm to reduce the time and memory
needed to slide the windows. A new data structure NewCET
(New Closed Enumeration Tree) based on a prefix tree
structure is developed to maintain the essential information
of closed frequent itemsets in the recent transaction of a data
stream.

In the NewMoment algorithm, the bit-sequence has three
kinds of effect: (1) representation of items, (2) window
sliding and (3) counting support. In the representation phase,
for each item X in the current sliding window, a bit-sequence
with w bits, is constructed. If an item X is in the ith
transaction of the current window, the bit of Bit(X) is set
to be 1; otherwise, it is set to be 0. In the window sliding
phase, the process consists of two steps: delete the oldest
transaction and append the incoming transaction. The bit-
sequence of items is used to left-shift one bit to delete the
oldest transaction. The concept of bit-sequence can be used
to count support. For example, in Figure 4, the bit-sequence
of 2-itemset “ab”, Bit(ab), is 1010. That means transactions
T1 and T3 contain itemset “ab”.

The NewCET data structure consists of three parts. (1)
The bit-sequences of all 1-itemsets in the current transaction-
sensitive window TransSW. (2) A set of closed frequent
itemsets in TransSW. (3) A hash table for checking whether
a frequent itemset is closed or not, and storing all closed
frequent itemsets with their supports as keys, which is
similar to the one used in the Moment algorithm [4].

III. THE SUBSET-LATTICE ALGORITHM
One of the well-known window models for data streams

is the sliding window model. The sliding window model
emphasizes the recent data, which in the majority of real-
world applications is more important and relevant than old
data. In this section, we present our Subset-Lattice algo-
rithm. We first define some basic definitions and notations
and then discribe how to use these techniques to find and
represent closed frequent itemsets and organize the closed
frequent itemsets in a lattice.
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Figure 4. Example of Transaction-Sensitive Window

Table I
VARIABLES

Notation Description
w The sliding window size

T id The transaction ID of data streams
NewT A transaction which is going to be inserted into the

Subset-Lattice
OldT A transaction which is already in the Subset-Lattice

InterX A common subset of transactions NewT and OldT
ODes A descendant of transaction OldT

ChildT A child lattice of transaction OldT
InterY A common subset of transactions InterX and ChildT
DelT A transaction which is going to be deleted from the

Subset-Lattice
DesT A child lattice of transaction DelT
ParT The parent lattice of transaction DelT
T idset A set of Tid

In the Subset-Lattice algorithm, we first transfer the
transaction into bit-representation. Take transaction {CD}
as an example. We use the maximum length of itemset as
the length of bit-length and itemsets are ordered as lexical
order. When the item appears in the transaction, we set the
bit to 1 according to the lexical order position. The bit-
represent of {CD} is denoted as Bit(0011), since there
are four items {ABCD}. By way of the sliding window
approach, we maintain the essential information of closed
frequent itemsets in the recent w transactions of a data
stream. The sliding process consists of two steps: delete
the oldest transaction and append the incoming transaction.
Second, we use set-relation checking to deal with each
transaction. The variables used in our algorithm are listed in
Table I.

The proposed data structure, called Subset-Lattice, is an
extended Lattice structure. The Subset-Lattice consists of
two parts.

1) A lattice node which contains the information of
transaction itemset and transaction ID.

2) A pointer which represents the relation between the
superset and the subset. In the Subset-Lattice, a pointer
is pointed to the subset from the superset.

NewT OldTNewT = OldT

NewT

OldT

OldT

NewT

NewT OldT

Bit(NewT) = Bit(OldT)

Bit(NewT)  Bit(OldT) = Bit(OldT) Bit(NewT)  Bit(OldT) = Bit(NewT)

Bit(NewT)  Bit(OldT) = Bit(NewT     OldT)

Bit(NewT)  Bit(OldT) =
(a)

(c)

(b)

(d)

(e)

Figure 5. Conditions of subsumption checking: (a) Case 1; (b) Case 2;
(c) Case 3; (d) Case 4; (e) Case 5.

A. Data Insertion
In this step, we focus on recent transactions in data

streams. The proposed algorithm is processed as follows.
First, we insert the transaction into the Subset-Lattice includ-
ing the transaction itemset X and transaction identifier Tid.
When the next transaction comes, we start to process the
subsumption checking. In the subsumption checking step,
conditions are considered based on the relation between the
new transaction NewT and the old transaction OldT . We
use logical AND and XOR operators to make subsumption
checking more efficient.

In Figure 5, Case 1 indicates the bit-operation
Bit(NewT ) ⊗ Bit(OldT ) = ø; that is, itemset NewT and
itemset OldT are the same itemset. Case 2 indicates the
bit-operation Bit(NewT ) ∧ Bit(OldT ) = ø; that is, there
is no relation between NewT and OldT . Case 3 indicates
the bit-operation Bit(NewT ) ∧ Bit(OldT ) = Bit(OldT );
that is, itemset NewT is the superset of itemset OldT . Case
4 indicates the bit-operation Bit(NewT ) ∧ Bit(OldT ) =
Bit(NewT ); that is, itemset OldT is the superset of itemset
NewT . Case 5 indicates the bit-operation Bit(NewT ) ∧
Bit(OldT ) = Bit(NewT ∩ OldT ); that is, itemset NewT
and itemset OldT have some common items.

We use an example to illustrate the data appending proce-
dure. Figure 6 shows an example of stream data and window
size = 5. When the data stream comes, we process procedure
Insert. Transaction Tid1 is the first transaction of the data
stream, The itemset {CD} and Tid(1) are inserted into the
Subset-Lattice directly. Transaction Tid2 will call function
CheckSet to check the relation among transaction Tid2 and
previous transactions. Transaction Tid2 will process Case
2, because {AB} ∩ {CD} is empty. Thus, a new node for
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Tid Item Bit-represent
1 CD 0011

2 AB 1100
3 AB 1100

4 ABCD 1111
5 ABD 1101
6 AC 1010

Figure 6. An example of the data stream

root

AB CD
1100, Tid(2) 0011, Tid(1)

Figure 7. Subset-Lattice of transaction Tid(1) and transaction Tid(2)

itemset {AB} is created and transaction Tid(2) is inserted
into the Subset-Lattice. Figure 7 shows the result of inserting
transactions Tid1 and Tid2.

Transaction Tid3 will call function FindT to search the
Subset-Lattice, to check whether it can find the itemset in the
Subset-Lattice or not. In function FindT , we will process
Case 1. By way of function FindT , we can find itemset
{AB}, which is already in the Subset-Lattice. Hence, we
only update Tid(3) into itemset {AB}’s Tidset as shown
in Figure 8. Transaction Tid4 is the condition of Case 3.
Itemset {ABCD} is the superset of itemset {AB} and item-
set {CD}. Therefore, we will process function CheckSet.
Itemsets {AB} and {CD} become itemset {ABCD}’s child.
We then insert transaction Tid(4) into the Tidset of itemsets
{AB} and {CD} as shown in Figure 9.

Transaction Tid5 will pass through conditions of Case
4 and Case 5. First, itemset {ABD} encounters item-
set {ABCD} and by way of function CheckSet, itemset
{ABD} becomes a child of itemset {ABCD} and a superset
of itemset {AB}(Case 4). We need to insert Tidset of

root

AB CD
1100, Tid(2) 0011, Tid(1)

root

AB CD
1100, Tid(2, 3) 0011, Tid(1)

Figure 8. Subset-Lattice of transaction Tid(3)

root

AB CD
1100, Tid(2, 3) 0011, Tid(1)

root

AB CD
1100, Tid(2, 3, 4) 0011, Tid(1, 4)

ABCD
1111, Tid(4)

Figure 9. Subset-Lattice of transaction Tid(4)

root

AB CD
1100, Tid(2, 3, 4) 0011, Tid(1, 4)

ABCD
1111, Tid(4)

root

AB

CD

1100, Tid(2, 3, 4, 5)

0011, Tid(1, 4)

ABCD
1111, Tid(4)

ABD
1101, Tid(4, 5)

D
0001, Tid(1, 4, 5)

Figure 10. Subset-Lattice of transaction Tid(5)

itemset {ABCD} into itemset {ABD} and insert Tidset
of itemset {ABCD} into itemset {AB}. Second, through
function CheckSet, itemset {ABD} and itemset {CD} have
a common itemset {D}(Case 5). We create a new lattice node
for itemset {D}, then insert the Tidset of itemset {ABD}
and itemset {CD} into the Tidset of itemset {D} as shown
in Figure 10.

B. Data Deletion

In this step, we describe how to delete the oldest transac-
tion from the Subset-Lattice. When a transaction is out of the
current window, it should be deleted from the Subset-Lattice.
In the Subset-Lattice, We also need to traverse the nodes
which are relevant to the deleted transaction, and update their
Tidset. If a node is deleted from the Subset-Lattice, a subset
of the deleted node will be influenced. Because the subset
lattice node could be created by two itemsets. For example,
itemset {D} is created by itemset {ABD} and itemset {CD}.
Both itemset {ABD} and itemset {CD} contain itemset {D};
therefore, the support of itemset {D} is larger than that of
its superset itemset {ABD} and itemset {CD}. In this case,
any itemset of these two itemsets is deleted, and the subset
lattice node will be deleted in the meantime.

Based on the properties of closed frequent itemsets, any
lattice node in the Subset-Lattice is a closed frequent itemset.
We use an example shown in Figure 11 to describe the
procedure of deletion. In this example, itemset {CD} is
the oldest transaction in the current window. According
to the window table, where a window table is the tilted-
time window structure inserted into each node, we can
directly find the location of itemset {CD}. First, we remove
transaction Tid(1) from Tidset of itemset {CD} and all of
its subsets recursively as shown in Figure 11-(b). Second,
we compare Tidset of itemset {D} with that of its superset
{ABD} and superset {CD}. There is a critical key point
in this step, if the Tidset of a subset is equal to its
superset, then the subset and superset must occur in the same
transaction; that is, the subset becomes a unclosed frequent
itemset. Therefore, itemset {D} should be deleted from the
Subset-Lattice. The itemset {CD} should be deleted in the
same way as shown in Figure 11-(c) and Figure 11-(d).
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root

AB

CD

1100, Tid(2, 3, 4, 5)

0011, Tid(4)

ABCD
1111, Tid(4)

ABD
1101, Tid(4, 5)

D
0001, Tid(4, 5)

(b)

root

AB

CD

1100, Tid(2, 3, 4, 5)

0011, Tid(1, 4)

ABCD
1111, Tid(4)

ABD
1101, Tid(4, 5)

D
0001, Tid(1, 4, 5)

(a)

root

AB

CD

1100, Tid(2, 3, 4, 5)

0011, Tid(4)

ABCD
1111, Tid(4)

ABD
1101, Tid(4, 5)

(c)

root

AB
1100, Tid(2, 3, 4, 5)

ABCD
1111, Tid(4)

ABD
1101, Tid(4, 5)

(d)

Figure 11. Subset-Lattice after deleting itemset {CD}: (a) the original
lattice; (b) updating the Tidset of itemset {CD} and itemset {D}; (c)
deleting itemset {D}; (d) deleting itemset {CD}.

Table II
PARAMETERS USED IN THE EXPERIMENT

Parameters Meaning
|T | The average size of transactions
|MT | The maximum size of transactions
|I| The average size of maximal potentially frequent itemsets
|D| The number of transactions
|MI| The maximum size of potentially frequent itemsets
corr The number of the correlation level
|L| The number of the maximal potentially frequent itemsets
|N | The number of items
|SW | The size of the sliding window
|S| The minimum support

IV. PERFORMANCE

In this section, first, we show how to generate the syn-
thetic data which will be used in the simulation. Second, we
study the performance of the NewMoment algorithm and our
proposal Subset-Lattice algorithm.

A. The Simulation Model
In this subsection, we describe the way to generate

synthetic transaction data from the IBM synthetic data
developed by Agrawal et al. [1]. These synthetic transaction
data sets are used to evaluate the performance of algorithms
for mining closed frequent itemsets. The parameters used in
the generation of the synthetic data are shown in Table II.

B. Experimental Results
In this subsection, we show the experiment results. All

experiments are done on a 2.4 GHz Intel Core2 Quad PC
with 2GB memory and running with Windows XP system.
The proposed Subset-Lattice algorithm was implemented in
Java and compiled by JDK 1.5.0.
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Figure 12. A comparison of the processing time of loading the first window
with different sliding window sizes
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Figure 13. A comparison of the processing time of loading the first window
with different minimum supports

We show the comparison of the processing time be-
tween our Subset-Lattice algorithm and the NewMoment
algorithm, when using the synthetic datasets as the input.
Figure 12 shows the comparison of the processing time
of loading the first sliding window with different sliding
window sizes. The window size is changed from 10K to
100K, and the minimum support threshold is 1%. In the first
window, the NewMoment algorithm needs to build a prefix
(lexicographic) tree to reserve the candidate itemsets. We
can observe that the Subset-Lattice algorithm is faster than
the NewMoment algorithm. The reason is that the Subset-
Lattice algorithm does not have to generate candidates and
can judge the closed frequent itemsets immediately.

Figure 13 shows the comparison of the processing time
of loading the first sliding window with different minimum
supports. The synthetic data is T5.MT10.I10.MI20.D100k.
The minimum support threshold is changed from 1% to
0.1%, and the sliding window size is 100K. When the
minimum support decreases, the number of closed frequent
itemsets and the processing time increase. From this figure,
we can notice that if the support is small enough, the num-
ber of candidates of the NewMoment algorithm increases
rapidly. Therefore, the NewMoment algorithm takes longer
processing time than the Subset-Lattice algorithm.

Figure 14 shows the comparison of the average pro-
cessing time of the window sliding in each transaction
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Figure 14. A comparison of the average processing time of the window
sliding with different minimum supports
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Figure 15. A comparison of the average processing time of the window
sliding with different sliding window sizes

with different minimum supports. The synthetic data is
T5.MT10.I10.MI20.D100k. The minimum support threshold
is changed from 1% to 0.1%, and the sliding window size
is 10K. Figure 15 shows the comparison of the average
processing time of the window sliding in each transaction
with different sliding window sizes. The synthetic data
is T5.MT10.I10.MI20.D100k. The sliding window size is
changed from 1K to 10K, and the minimum support thresh-
old is 1%. The number of items of these two experiment
results are 1000. The time of the window sliding in these two
experiment are almost the same. In general, the processing
time of the Subset-Lattice algorithm is faster than that of the
NewMoment algorithm. The processing time of the window
sliding in the Subset-Lattice algorithm is saved about 50%.
The reason is that the NewMoment algorithm will regenerate
the nodes of k-level (k > 1) in the CET-Tree twice, when the
window is sliding. The Subset-Lattice algorithm only needs
to update the nodes that are already in the lattice structure.

V. CONCLUSION

In this paper, we have designed an efficient algorithm
for the problems of mining closed frequent itemsets in
data streams. Using the subsumption operation, the Subset-
Lattice algorithm can directly judge the closed frequent
itemsets from the data streams. When window slides, the
Subset-Lattice algorithm will not reconstruct the structure,

but the NewMoment algorithm has to reconstruct the whole
tree structure. The simulation results have shown that the
proposed Subset-Lattice algorithm outperforms the NewMo-
ment algorithm in all relational data settings.
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